Overview	Causality Framework	Structure Learning	GraN-DAG & ext.	Conclusion
0	00000000	0000000	000000000000000000000000000000000000000	00

Learning Causal Structures via Gradient-Based Optimization

Sébastien Lachapelle

Mila, Université de Montréal

March 4th, 2020

Overview	Overview	Causality Framework	Structure Learning	GraN-DAG & ext.	Conclusion
	Overview				

Causality Framework

- Causal Graphical Models
- Motivating example
- Markov Equivalence and Structure Identifiability

Causal Structure Learning

- Problem formulation
- Discrete Search Algorithms
- Gradient-Based Algorithms
- GraN-DAG & extensions
 - The algorithm
 - With interventional data
 - Neural Autoregressive Flows

Overview	Causality Framework	Structure Learning	GraN-DAG & ext.	Conclusion
Causal	graphical models	(CGM)		

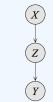
- Random vector $X \in \mathbb{R}^d$ (*d* variables)
- Let *G* be a directed acyclic graph (DAG)

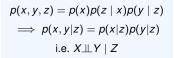
Assume
$$p(x) = \prod_{i=1}^{d} p(x_i | x_{\pi_i^{\mathcal{G}}})$$

 $\pi_i^{\mathcal{G}} = \text{parents of } i \text{ in } \mathcal{G}$

- Encodes (conditional) independence statements (via *d-separation*, see [Koller & Friedman, 2009])
- Almost identical to Bayesian Networks but allows for interventional distributions: p(x|do(z))

Simple example $\mathcal{G} = (V, E)$





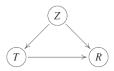
The do operator will be explained in the following example...

Mila Université de Montréal

Mila

Overview	Causality Framework	Structure Learning	GraN-DAG & ext.	Conclusion
Why sho	ould you care: Kid	nev Stone Trea	ıtment	

 $T = \text{Treatment} \in \{A, B\}$ $Z = \text{Stone size} \in \{\text{small}, \text{large}\}$ $R = \text{Patient recovered} \in \{0, 1\}$



	Overall	Patients with small stones	Patients with large stones
Treatment <i>a</i> : Open surgery	78% (273/350)	93% (81/87)	73% (192/263)
Treatment b: Percutaneous nephrolithotomy	83% (289/350)	87% (234/270)	69% (55/80)

(Example taken from Element of Causal Inference by Peters et al. p111)

Overview	Causality Framework	Structure Learning	GraN-DAG & ext.	Conclusion
Why sho	uld you care: Kid	dney Stone Trea	Itment	

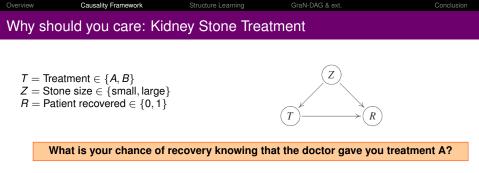
Pay attention to these two questions... Assuming the size of your stone is unknown...

Overview	Causality Framework	Structure Learning	GraN-DAG & ext.	Conclusion
Why sho	uld vou care: Kir	hev Stone Trea	Itment	

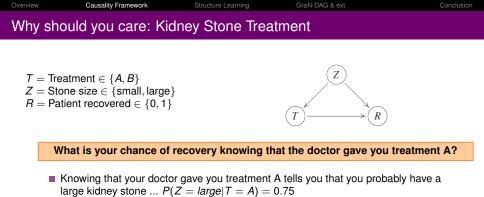
Pay attention to these two questions... Assuming the size of your stone is unknown...

What is your chance of recovery knowing that the doctor gave you treatment A?

What is your chance of recovery if you decide to take treatment A?



- Knowing that your doctor gave you treatment A tells you that you probably have a large kidney stone ... P(Z = large|T = A) = 0.75
- ... which reduces your chance of recovery P(R = 1 | T = A, Z = large) = 0.73 < 0.93 = P(R = 1 | T = A, Z = small)



• ... which reduces your chance of recovery P(R = 1 | T = A, Z = large) = 0.73 < 0.93 = P(R = 1 | T = A, Z = small)

What is your chance of recovery if you decide to take treatment A?

- Your really don't know anything about your kidney stone
- You taking treatment A is not a function of any variable



What is your chance of recovery knowing that the doctor gave you treatment A?

$$P(R = 1|T = A) = 0,78$$
 $P(R = 1|T = B) = 0,83$

What is your chance of recovery knowing that the doctor gave you treatment A?

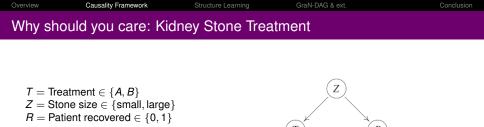
$$P(R = 1 | T = A) = 0,78$$
 $P(R = 1 | T = B) = 0,83$

What is your chance of recovery if you decide to take treatment A?

$$P(R = 1 | do(T = A)) = 0,832$$
 $P(R = 1 | do(T = B)) = 0,782$

R

1



What is your chance of recovery knowing that the doctor gave you treatment A?

$$P(R = 1|T = A) = 0,78$$
 $P(R = 1|T = B) = 0,83$

What is your chance of recovery if you decide to take treatment A?

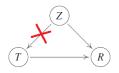
$$P(R = 1 | do(T = A)) = 0,832$$

P(R = 1 | do(T = B)) = 0,782

But how do we compute these interventional distributions?!

Overview	Causality Framework	Structure Learning	GraN-DAG & ext.	Conclusion
Why sh	ould you care: Kic	dney Stone Trea	Itment	

 $T = \text{Treatment} \in \{A, B\}$ $Z = \text{Stone size} \in \{\text{small}, \text{large}\}$ $R = \text{Patient recovered} \in \{0, 1\}$



$$P(R, Z|do(T = A)) = P(R|Z, T = A) \underbrace{P(T = A|Z)}_{The decision of taking treatments} P(Z)$$

The decision of taking treatment *A* does not depend on *Z* anymore

Then simply marginalize as usual:

$$P(R = 1|do(T = A)) = \sum_{Z} P(R = 1, Z|do(T = A))$$
$$= \sum_{Z} P(R = 1|Z, T = A)P(Z) = 0,832$$

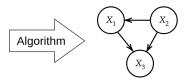
Overview	Causality Framework	Structure Learning	GraN-DAG & ext.	Conclusion
Structur	e Learning			

In the kidney stone example, the causal graph was known

What if we don't have it? Learn it!

Purely observational data

	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃
sample 1	1.76	10.46	0.002
sample2	3.42	78.6	0.011
sample <i>n</i>	4.56	9.35	1.96



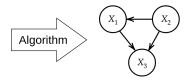
Overview	Causality Framework	Structure Learning	GraN-DAG & ext.	Conclusion
<u>.</u>				
Structur	re Learning			

In the kidney stone example, the causal graph was known

What if we don't have it? Learn it!

Purely observational data

	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃
sample 1	1.76	10.46	0.002
sample2	3.42	78.6	0.011
sample <i>n</i>	4.56	9.35	1.96



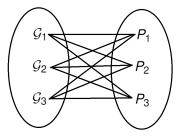
Is it even possible?

Overview	Causality Framework	Structure Learning	GraN-DAG & ext.	Conclusion
Identifiabil	ity			

In general, this is impossible without interventional data...

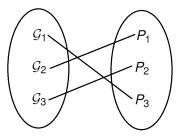
Overview	Causality Framework	Structure Learning	GraN-DAG & ext.	Conclusion
Identifia	ability			

- In general, this is impossible without interventional data...
- Multiple DAGs can express the same distribution...



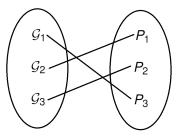
Overview	Causality Framework	Structure Learning	GraN-DAG & ext.	Conclusion
Identifiab	ility			

■ If we assume causal mechanisms are "simple", then *G* can be identified...



Overview	Causality Framework	Structure Learning	GraN-DAG & ext.	Conclusion
Identifial	bility			

■ If we assume causal mechanisms are "simple", then *G* can be identified...



An example (useful later!)

If data follows this model...

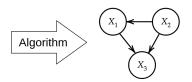
$$X_i | X_{\pi_i^{\mathcal{G}}} \sim \mathcal{N}(f_i(X_{\pi_i^{\mathcal{G}}}), \sigma_i^2)$$

...then correct causal DAG \mathcal{G} can be identified from purely observational data (see [Peters et al., 2014] for proof and regularity conditions)

Overview	Causality Framework	Structure Learning	GraN-DAG & ext.	Conclusion
Ctructure				

Structure Learning

	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃
sample 1	1.76	10.46	0.002
sample2	3.42	78.6	0.011
sample <i>n</i>	4.56	9.35	1.96



Score-based algorithms

$$\hat{\mathcal{G}} = \mathop{\mathrm{arg\,max}}_{\mathcal{G}\in\mathsf{DAG}}\mathsf{Score}(\mathcal{G})$$

Often, Score(\mathcal{G}) = regularized maximum likelihood under \mathcal{G}

Overview	Causality Framework	Structure Learning	GraN-DAG & ext.	Conclusion
Structur	e Learning			

Taxonomy of score-based algorithms (non-exhaustive)

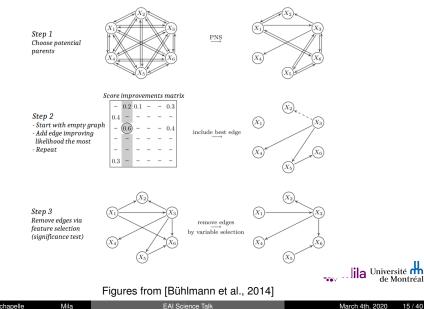
	Discrete optim.	Continuous optim.
 Linear	GES [Chickering, 2003]	NOTEARS [Zheng et al., 2018]
Nonlinear	CAM [Bühlmann et al., 2014]	GraN-DAG [Lachapelle et al., 2020]

Overview	Causality Framework	Structure Learning	GraN-DAG & ext.	Conclusion
Structure	Learning			

Taxonomy of score-based algorithms (non-exhaustive)

		Discrete optim.	Continuous optim.
· · · · · · · · · · · · · · · · · · ·	Linear	GES [Chickering, 2003]	NOTEARS [Zheng et al., 2018]
×~~, ,	Nonlinear	CAM [Bühlmann et al., 2014]	GraN-DAG [Lachapelle et al., 2020]

A greedy algorithm - CAM [Bühlmann et al., 2014]



Overview	Causality Framework	Structure Learning	GraN-DAG & ext.	Conclusion
Structur	e Learning			

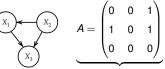
Taxonomy of score-based algorithms (non-exhaustive)

		Discrete optim.	Continuous optim.
	Linear	GES [Chickering, 2003]	NOTEARS [Zheng et al., 2018]
*	Nonlinear	CAM [Bühlmann et al., 2014]	GraN-DAG [Lachapelle et al., 2020]

Overview Causality Framework Structure Learning GraN-DAG & ext.

NOTEARS: Continuous optimization for structure learning

Encode graph as a weighted adjacency matrix $U = [u_1 | \dots | u_d] \in \mathbb{R}^{d \times d}$



Adjacency matrix

$$U = \begin{pmatrix} 0 & 0 & 4.8 \\ 0.2 & 0 & -1.7 \\ 0 & 0 & 0 \end{pmatrix}$$

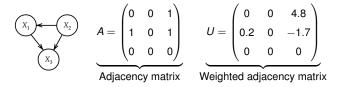
Weighted adjacency matrix

 Overview
 Causality Framework
 Structure Learning
 GraN-DAG & ext.
 Conclusion

 NOTEADS:
 Constinueuro continuization for attructure learning
 Constinueuro continuization
 Conclusion

NOTEARS: Continuous optimization for structure learning

Encode graph as a weighted adjacency matrix $U = [u_1 | \dots | u_d] \in \mathbb{R}^{d \times d}$



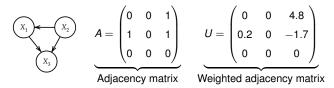
Represents coefficients in a linear model:

$$X_i := u_i^\top X + \text{noise}_i \ \forall i$$

Overview Causality Framework Structure Learning

NOTEARS: Continuous optimization for structure learning

Encode graph as a weighted adjacency matrix $U = [u_1 | \dots | u_d] \in \mathbb{R}^{d \times d}$



Represents coefficients in a linear model:

$$X_i := u_i^\top X + \text{noise}_i \ \forall i$$

For an arbitrary U, associated graph might be cyclic

Acyclicity constraint

 $\begin{array}{l}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\end{array} \\
\end{array} \\
\left(e^{M} \triangleq \sum_{k=0}^{\infty} \frac{M^{k}}{k!} \right) \\
\end{array} \\
\end{array}$ $\begin{array}{c}
\begin{array}{c}
\end{array} \\
\end{array} \\
\begin{array}{c}
\end{array} \\
\end{array} \\
\begin{array}{c}
\end{array} \\
\end{array} \\
\begin{array}{c}
\end{array} \\
\begin{array}{c}
\end{array} \\
\end{array} \\
\end{array} \\
\end{array}$ } \\
\end{array} \\
\end{array}
} \\
\end{array} \\
\end{array}
} \\

} \\
\end{array}
} \\

} \\
\end{array}
} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\ NOTEARS [Zheng et al., 2018] uses this differentiable acyclicity constraint:

$$\operatorname{Tr} e^{U \odot U} - d = 0$$

NOTEARS [Zheng et al., 2018]: Solve this continuous constrained optimization problem:

$$\max_{U} \underbrace{-\|\mathbf{X} - \mathbf{X}U\|_{F}^{2} - \lambda \|U\|_{1}}_{\text{Score}} \quad \text{s.t.} \quad \text{Tr } e^{U \odot U} - d = 0$$

• where $\mathbf{X} \in \mathbb{R}^{n \times d}$ is the design matrix containing all *n* samples

NOTEARS [Zheng et al., 2018]: Solve this continuous constrained optimization problem:

$$\max_{U} \underbrace{-\|\mathbf{X} - \mathbf{X}U\|_{F}^{2} - \lambda \|U\|_{1}}_{\text{Score}} \quad \text{s.t.} \quad \text{Tr } e^{U \odot U} - d = 0$$

• where $\mathbf{X} \in \mathbb{R}^{n \times d}$ is the design matrix containing all *n* samples

Solve approximately using an Augmented Lagrangian method

$$-\|\mathbf{X} - \mathbf{X}U\|_F^2 - \lambda \|U\|_1 - \alpha_t (\operatorname{Tr} e^{U \odot U} - d) - \frac{\mu_t}{2} (\operatorname{Tr} e^{U \odot U} - d)^2$$

• while gradually increasing α_t and μ_t

Overview	Causality Framework	Structure Learning	GraN-DAG & ext.	Conclusion
NOTEARS	S: The acyclicity	y constraint		

$$\operatorname{Tr} \boldsymbol{e}^{\boldsymbol{U} \odot \boldsymbol{U}} - \boldsymbol{d} = \boldsymbol{0} \qquad \qquad \left(e^{\boldsymbol{M}} \triangleq \sum_{k=0}^{\infty} \frac{\boldsymbol{M}^{k}}{k!} \right)$$

Overview	Causality Framework	Structure Learning	GraN-DAG & ext.	Conclusion
NOTEAR	S: The acyclicity	y constraint		

$$\operatorname{Tr} \boldsymbol{e}^{\boldsymbol{U} \odot \boldsymbol{U}} - \boldsymbol{d} = \boldsymbol{0} \qquad \qquad \left(\boldsymbol{e}^{\boldsymbol{M}} \triangleq \sum_{k=0}^{\infty} \frac{\boldsymbol{M}^{k}}{k!} \right)$$

 $(A^k)_{ii}$ = number of **cycles** of length *k* passing through *i*

Overview	Causality Framework	Structure Learning	GraN-DAG & ext.	Conclusion
NOTFAR	S: The acyclicity	/ constraint		

Tr
$$e^{U \odot U} - d = 0$$
 $\left(e^M \triangleq \sum_{k=0}^{\infty} \frac{M^k}{k!}\right)$

 $(A^k)_{ii}$ = number of **cycles** of length *k* passing through *i*

Overview	Causality Framework	Structure Learning	GraN-DAG & ext.	Conclusion
NOTEAE	S. The acyclicity	v constraint		

$$\operatorname{Tr} \boldsymbol{e}^{U \odot U} - \boldsymbol{d} = \boldsymbol{0} \qquad \qquad \left(\boldsymbol{e}^{M} \triangleq \sum_{k=0}^{\infty} \frac{M^{k}}{k!} \right)$$

 $(A^k)_{ii}$ = number of **cycles** of length *k* passing through *i*

$$\iff \operatorname{Tr}\left[\sum_{k=1}^{\infty} \frac{A^k}{k!}\right] = 0$$

Overview	Causality Framework	Structure Learning	GraN-DAG & ext.	Conclusion
	S: The acyclicity	<i>i</i> constraint		

$$\operatorname{Tr} e^{U \odot U} - d = 0 \qquad \qquad \left(e^{M} \triangleq \sum_{k=0}^{\infty} \frac{M^{k}}{k!} \right)$$

 $(A^k)_{ii}$ = number of **cycles** of length *k* passing through *i*

$$\iff \operatorname{Tr}\left[\sum_{k=1}^{\infty} \frac{A^{k}}{k!}\right] = 0$$
$$\iff \operatorname{Tr}\left[\sum_{k=0}^{\infty} \frac{A^{k}}{k!} - A^{0}\right] = 0$$

Overview	Causality Framework	Structure Learning	GraN-DAG & ext.	Conclusion
	RS: The acyclicity	<i>i</i> constraint		

$$\operatorname{Tr} \boldsymbol{e}^{U \odot U} - \boldsymbol{d} = \boldsymbol{0} \qquad \qquad \left(\boldsymbol{e}^{M} \triangleq \sum_{k=0}^{\infty} \frac{M^{k}}{k!} \right)$$

 $(A^k)_{ii}$ = number of **cycles** of length *k* passing through *i*

$$\iff \operatorname{Tr}\left[\sum_{k=1}^{\infty} \frac{A^{k}}{k!}\right] = 0$$
$$\iff \operatorname{Tr}\left[\sum_{k=0}^{\infty} \frac{A^{k}}{k!} - A^{0}\right] = 0$$
$$\iff \operatorname{Tr} e^{A} - d = 0$$

Overview	Causality Framework	Structure Learning	GraN-DAG & ext.	Conclusion
	S: The acyclicity	<i>i</i> constraint		

$$\operatorname{Tr} \boldsymbol{e}^{U \odot U} - \boldsymbol{d} = \boldsymbol{0} \qquad \qquad \left(\boldsymbol{e}^{M} \triangleq \sum_{k=0}^{\infty} \frac{M^{k}}{k!} \right)$$

 $(A^k)_{ii}$ = number of **cycles** of length *k* passing through *i*

Graph acyclic $\iff (A^k)_{ii} = 0$ for all *i* and all *k*

$$\iff \operatorname{Tr}\left[\sum_{k=1}^{\infty} \frac{A^{k}}{k!}\right] = 0$$
$$\iff \operatorname{Tr}\left[\sum_{k=0}^{\infty} \frac{A^{k}}{k!} - A^{0}\right] = 0$$
$$\iff \operatorname{Tr} e^{A} - d = 0$$

The argument is almost identical when using weighted adjacency U instead of A...

Overview	Causality Framework	Structure Learning	GraN-DAG & ext.	Conclusion
Structure	e Learning			

Taxonomy of score-based algorithms (non-exhaustive)

		Discrete optim.	Continuous optim.
	Linear	GES [Chickering, 2003]	NOTEARS [Zheng et al., 2018]
·~~, ,	Nonlinear	CAM [Bühlmann et al., 2014]	GraN-DAG [Lachapelle et al., 2020]

Overview	Causality Framework	Structure Learning	GraN-DAG & ext.	Conclusion
	+ Deced Merical D			

Gradient-Based Neural DAG Learning

$$\begin{array}{c|c} & NN_{\phi_{(1)}} \longrightarrow \theta_{(1)} \rightarrow \log p(x_1|x_{-1};\theta_{(1)}) \\ & &$$

Overview	Causality Framework	Structure Learning	GraN-DAG & ext.	Conclusion
Our all a m	L Deser Nervel D			

Gradient-Based Neural DAG Learning

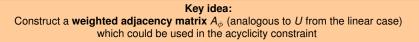
$$\begin{array}{c|c} & NN_{\phi_{(1)}} & \rightarrow \theta_{(1)} \rightarrow \log p(x_1 | x_{-1} ; \theta_{(1)}) \\ & & & \\ &$$

 $\prod_{i=1}^{d} p(x_i | x_{-i}; \theta_{(i)})$ does not decompose according to a DAG!

We need to constrain the networks to be acyclic! How?

Mila

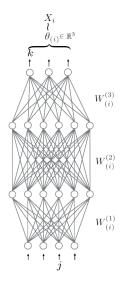
Overview	Causality Framework	Structure Learning	GraN-DAG & ext.	Conclusion
Gradien	t-Based Neural [OAG Learning		



Then maximize likelihood under acyclicity constraint via augmented Lagrangian

$$\max_{\phi} \sum_{X \sim P_X} \sum_{i=0}^{d} \log p_{\phi}(X_i | X_{-i}) - \alpha_t (\operatorname{Tr} e^{A_{\phi}} - d) - \frac{\mu_t}{2} (\operatorname{Tr} e^{A_{\phi}} - d)^2$$

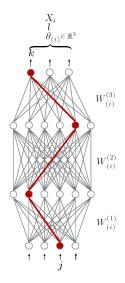
Augmented Lagrangian



Let's measure the "strength" of edge $X_i \rightarrow X_i$

 Overview
 Causality Framework
 Structure Learning
 GraN-DAG & ext.
 Conclusion

Constructing weighted adjacency matrix A_{ϕ}



Let's measure the "strength" of edge $X_j \rightarrow X_i$

Path product: $|W_{h_1j}^{(1)}||W_{h_2h_1}^{(2)}||W_{kh_2}^{(3)}| \ge 0$

Overview

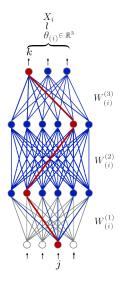
Causality Framework

Structure Learning

GraN-DAG & ext.

Conclusion

Constructing weighted adjacency matrix A_{ϕ}



Let's measure the "strength" of edge $X_i \rightarrow X_i$

Path product: $|W_{h_1j}^{(1)}||W_{h_2h_1}^{(2)}||W_{kh_2}^{(3)}| \ge 0$

 $C \triangleq |W^{(3)}||W^{(2)}||W^{(1)}|$ $"Connection strength" from <math>X_j$ to $\theta_{(i)}$: $\sum_{k=1}^m C_{kj} \ge 0$

Overview

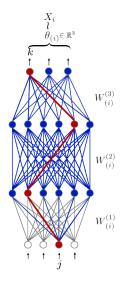
Causality Framework

Structure Learning

GraN-DAG & ext.

Conclusion

Constructing weighted adjacency matrix A_{ϕ}



Let's measure the "strength" of edge $X_i \rightarrow X_i$

- Path product: $|W_{h_1j}^{(1)}||W_{h_2h_1}^{(2)}||W_{kh_2}^{(3)}| \ge 0$
- $C \triangleq |W^{(3)}||W^{(2)}||W^{(1)}|$ $"Connection strength" from <math>X_j$ to $\theta_{(i)}$: $\sum_{k=1}^{m} C_{kj} \ge 0$
- $\sum_{k=1}^{m} C_{kj} = 0 \Rightarrow$ All paths from X_j to X_i are **inactive**!

Overview

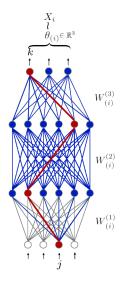
Causality Framework

Structure Learning

GraN-DAG & ext.

Conclusion

Constructing weighted adjacency matrix A_{ϕ}



Let's measure the "strength" of edge $X_i \rightarrow X_i$

Path product: $|W_{h_1j}^{(1)}||W_{h_2h_1}^{(2)}||W_{kh_2}^{(3)}| \ge 0$

■ $C \triangleq |W^{(3)}||W^{(2)}||W^{(1)}|$ "Connection strength" from X_j to $\theta_{(i)}$: $\sum_{k=1}^{m} C_{kj} \ge 0$

• $\sum_{k=1}^{m} C_{kj} = 0 \Rightarrow$ All paths from X_j to X_i are **inactive**!

$$ig(m{A}_{\phi} ig)_{ji} riangleq \left\{ egin{array}{c} \sum_{k=1}^m ig(m{C}_{(i)} ig)_{kj} \,, & ext{if } i
eq j \ 0, & ext{otherwise} \end{array}
ight.$$

The algorithm:

Preliminary neighborhood selection (analogous to CAM)

- i.e. for each node, select potential parents via any variable selection approach
- 2 Maximize likelihood under acyclicity constraint via augmented Lagrangian

$$\max_{\phi} \underbrace{\mathbb{E}}_{X \sim P_X} \sum_{i=0}^{d} \log p_{\phi}(x_i | x_{-i}) - \alpha_t (\operatorname{Tr} e^{A_{\phi}} - d) - \frac{\mu_t}{2} (\operatorname{Tr} e^{A_{\phi}} - d)^2$$

Augmented Lagrangian

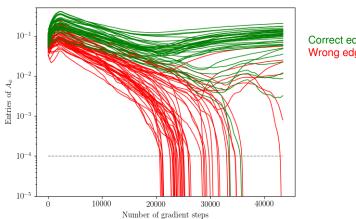
3 DAG Pruning (analogous to CAM)

Mila

i.e. for each node, get rid of some parents via any variable selection approach

Step 1 and 3 helps reducing overfitting. Important since **adding edges cannot reduce maximum likelihood**

Overview	Causality Framework	Structure Learning	GraN-DAG & ext.	Conclusion
Gradient	-Based Neural [DAG Learning		



Correct edges Wrong edges

Overview	Causality Framework	Structure Learning	GraN-DAG & ext.	Conclusion
Experim	nents			

Synthetic data: $X_i | X_{\pi_i^{\mathcal{G}}} \sim \mathcal{N}(f_i(X_{\pi^{\mathcal{G}}}), \sigma_i^2) \quad f_i \sim \text{Gaussian Process}$

Models: GraN-DAG, NOTEARS and CAM makes the Gaussian assumption

Real data: Measurements of expression levels of proteins and phospholipids in human immune system cells [Sachs et al., 2005]

		Synthetic (50 nodes)		Protein data set	
		SHD SID		SHD	SID
	GraN-DAG	102.6±21.2	1060.1±109.4	13	47
Continuous	DAG-GNN	191.9±15.2	2146.2±64	16	44
	NOTEARS	202.3±14.3	2149.1±76.3	21	44
Discrete	CAM	98.8±20.7	1197.2±125.9	12	55
	RANDOM	708.4±234.4	1921.3±203.5	21	60

DAG-GNN [Yu et al., 2019]

Overview	Causality Framework	Structure Learning	GraN-DAG & ext.	Conclusion
Experime	ents			

In previous setup, synthetic data generation and model matched

Here: model misspecification

		PNL-GP SHD	SID	PNL-MULT SHD	SID
10 nodes ER1		1.6±3.0	3.9±8.0	13.1±3.8	35.7±12.3
	DAG-GNN	11.5 ± 6.8	32.4±19.3	17.900 ± 6.2	40.700 ± 14.743
	NOTEARS	10.7 ± 5.5	34.4±19.1	$14.0{\pm}4.0$	38.6±11.9
	CAM	$1.5{\pm}2.6$	6.8±12.1	12.0 ± 6.4	36.3±17.7
	GSF	6.2±3.3	$[7.7\pm8.7, 18.9\pm12.4]$	10.7±3.0	[9.8±11.9, 25.3±11.5]
	RANDOM	$23.8 {\pm} 2.9$	36.8±19.1	23.7±2.9	37.7±20.7

Synthetic post nonlinear data sets

GSF [Huang et al., 2018a]

Overview	Causality Framework	Structure Learning	GraN-DAG & ext.	Conclusion
Experim	nents: Effect of sa	Imple size		

- Previous experiment: relatively small dataset: 1000 examples
- GraN-DAG is more expressive than CAM
- Advantage shows up in large sample size regimes

Sample size	Method	SHD	SID
500	CAM	123.5 ± 13.9	1181.2 ± 160.8
	GraN-DAG	130.2 ± 14.4	1246.4 ± 126.1
1000	CAM	103.7 ± 15.2	1074.7 ± 125.8
	GraN-DAG	104.4 ± 15.3	942.1 ± 69.8
5000	CAM	74.1 ± 13.2	845.0 ± 159.8
	GraN-DAG	71.9 ± 15.9	554.1 ± 117.9
10000	CAM	66.3 ± 16.0	808.1 ± 142.9
	GraN-DAG	65.9 ± 19.8	453.4 ± 171.7

Effect of sample size - Gauss-ANM 50 nodes ER4 (averaged over 10 datasets)

 Overview
 Causality Framework
 Structure Learning
 GraN-DAG & ext.
 Conclusion

 GraN-DAG with interventions [Brouillard et al., 2020]
 Conclusion
 Conclusion
 Conclusion

Can we make use of interventional data?

Overview	Causality Framework	Structure Learning	GraN-DAG & ext.	Conclusion
GraN-DA	G with intervent	ions [Brouillard o	et al., 2020]	

Some terminology and setting:

I \subset {1,..., *n*} is an *interventional target* (set of nodes on which we intervene)

Definition of stochastic intervention:

$$p(x_1,...,x_d|do(X_l)) \triangleq \prod_{j \notin I} p_j(x_j|x_{\pi_j^G}) \prod_{j \in I} \tilde{p}_j(x_j)$$

where $\tilde{p}_j(x_j)$ is the *new marginal* replacing $p_j(x_j|x_{\pi_i^{\mathcal{G}}})$ (parents are "cut out")

Overview	Causality Framework	Structure Learning	GraN-DAG & ext.	Conclusion
GraN-DA	G with intervent	ions [Brouillard	et al., 2020]	

Some terminology and setting:

I \subset {1,..., *n*} is an *interventional target* (set of nodes on which we intervene)

Definition of stochastic intervention:

$$p(x_1,...,x_d|do(X_l)) \triangleq \prod_{j \notin I} p_j(x_j|x_{\pi_j^G}) \prod_{j \in I} \tilde{p}_j(x_j)$$

where $\tilde{p}_j(x_j)$ is the *new marginal* replacing $p_j(x_j|x_{\pi_j^{\mathcal{G}}})$ (parents are "cut out")

■ **Observed:** {(X⁽¹⁾, I⁽¹⁾), ..., (X⁽ⁿ⁾, I⁽ⁿ⁾)} where I⁽ⁱ⁾ is the interventional target associated to observation X⁽ⁱ⁾.

$$I^{(i)} \sim P(I) \text{ i.i.d. } \forall i$$

$$X^{(i)} | I^{(i)} \sim P(X | I = I^{(i)}) \triangleq p(x_1, ..., x_d | do(X_{I^{(i)}})) \forall i$$
(1)

where P(I) is a distribution over a collection of interventional targets I

Overview	Causality Framework	Structure Learning	GraN-DAG & ext.	Conclusion
GraN-DA	G with interventi	ons [Brouillard	et al., 2020]	

Think about a CGM as a family of models of the form

$$\left\{\prod_{j\not\in I} p_j(x_j|x_{\pi_j^{\mathcal{G}}};\phi_j)\prod_{j\in I} \tilde{p}_j(x_j;\omega_j^I)|I\in\mathcal{I}\right\}$$

where $\omega^{I} \triangleq \{\omega_{i}^{I}\}_{i \in I}$ for each $I \in \mathcal{I}$ are learnable parameters.

The natural optimization problem:

$$\max_{\phi, \{\omega'\}_{l \in \mathcal{I}}} \mathbb{E}_{(X,l) \sim \mathcal{P}(X,l)} \left[\sum_{j \notin I} \log p_j(X_j | X_{-j}; \phi_j) + \sum_{j \in I} \log p_j(X_j; \omega_j^l) \right] \quad \text{s.t.} \quad \text{Tr } e^{A_{\phi}} = d$$

But we do not really care about learning the $p_j(X_j; \omega_i^l)$...

• ... and problem trivially decomposes as a sum of \max_{ϕ} and $\max_{\{\omega'\}_{l\in\mathcal{T}}}$ so ...

Overview	Causality Framework	Structure Learning	GraN-DAG & ext.	Conclusion
GraN-DA	G with intervent	ions [Brouillard	et al., 2020]	

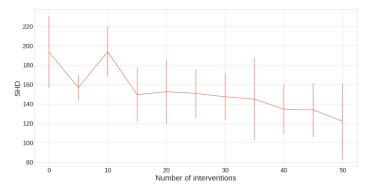
• ... can forget about $p_j(X_j; \omega_j^l)$ altogether and get

The optimization problem:

$$\max_{\phi} \mathbb{E}_{(X,I) \sim \mathcal{P}(X,I)} \sum_{j \notin I} \log \mathcal{P}(X_j | X_{-j}; \phi_j) \quad \text{s.t.} \quad \text{Tr } e^{A_{\phi}} = d$$

In a nutshell: We throw out the conditionals associated with the intervention variables

Overview	Causality Framework	Structure Learning	GraN-DAG & ext.	Conclusion
GraN-DAC	a with intervent	tions [Brouillard e	et al., 2020]	



- Linear data (unidentifiable without interventions)
- 50 nodes and \approx 200 edges
- Intervention on one node at a time

GraN-DAG with interventions [Brouillard et al., 2020]

Nonlinear data

	20 nodes, e = 1		20 nodes, e = 4		50 nodes, e = 1		50 nodes, e = 4	
Method	SHD	SID	SHD	SID	SHD	SID	SHD	SID
GraN-DAG	$1.0 \pm 1.2 $	$1.9 \pm \scriptstyle 3.7$	$\textbf{33.3} \pm \textbf{10.0}$	$138.9 \pm {\scriptstyle 21.0}$	$85.3 \pm {\scriptstyle 20.2}$	$885.3 \pm {\scriptstyle 151.4}$	$3.2 \pm {\scriptstyle 2.8}$	$12.7 \pm {\scriptstyle 13.6}$
GraN-DAG no interv	0.7 ± 0.8	1.1 ± 2.3	41.5 ± 8.0	164.2 ± 27.9	109.8 ± 17.6	1021.7 ± 109.0	4.1 ± 2.3	18.6 ± 15.1
GIES	14.6 ± 5.8	$34.9 \pm {\scriptstyle 23.1}$	64.3 ± 6.1	282.7 ± 36.7	170.2 ± 21.1	1820.7 ± 183.0	41.6 ± 9.9	$107.9 \pm \textbf{48.9}$
CAM*	$1.9{\scriptstyle~\pm 2.5}$	$4.8 \pm \scriptstyle 6.3$	$48.8 \pm \scriptscriptstyle 23.5$	$144.3 \pm \scriptscriptstyle 38.6$	$91.9 \pm {\scriptstyle 11.9}$	$1024.4 \pm \texttt{118.0}$	$4.7 \pm {\scriptstyle 3.8}$	$24.5 \pm {\scriptstyle 18.1}$

Linear data

	20 node	es, $e = 1$	20 nod	es, $e = 4$	50 nod	es, e = 1	50 nod	es, $e = 4$
Method	SHD	SID	SHD	SID	SHD	SID	SHD	SID
GraN-DAG	5.7 ± 5.4	31.3 ± 37.5	24.5 ± 7.4	$159.6 \pm \textbf{34.9}$	12.5 ± 7.2	$63.4 \scriptstyle \pm 36.0$	$52.7 \pm \textbf{16.0}$	699.9 ± 166.3
GraN-DAG no interv	17.7 ± 8.2	$91.8 \pm \scriptscriptstyle 71.9$	$88.3 \pm {\scriptstyle 23.2}$	275.2 ± 17.0	41.2 ± 7.3	$163.8 \pm \textbf{70.4}$	$193.4 \pm \scriptscriptstyle 39.3$	1667.7 ± 169.2
GIES	2.4 ± 1.1	$\textbf{0.0} \pm \textbf{0.0}$	$29.7 \pm \scriptscriptstyle 28.2$	122.3 ± 103.7	$13.9 \pm \scriptstyle 3.8$	0.0 ± 0.0	$129.7 \pm \textbf{75.1}$	$757.8 \pm \textbf{477.7}$
CAM*	$6.5{\scriptstyle~\pm 8.7}$	$19.0 \pm \scriptstyle 35.0$	$59.2 \scriptstyle \pm 27.2$	$173.1 \pm {\scriptstyle 69.2}$	$1.9 \pm {\scriptstyle 2.4}$	$9.8 \pm {\scriptstyle 16.5}$	$135.4 \pm {\scriptstyle 29.8}$	$1484.1 \pm \scriptscriptstyle 274.8$

More experiments in workshop paper...

Overview	Causality Framework	Structure Learning	GraN-DAG & ext.	Conclusion
GraN-DA	G with Neural A	utoregressive flo	ows	

In previous experiments, GraN-DAG models was:

$$X_i = NN_{\phi_i}(X_{\pi_i^\mathcal{G}}) + \sigma_i Z$$
 with $Z \sim \mathcal{N}(0, 1)$ $orall i$

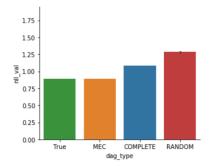
 GraN-DAG's framework allows for usage of "Neural Autoregressive Flows" [Huang et al., 2018b]

$$X_i = NAF(Z; NN_{\phi_i}(X_{\pi^{\mathcal{G}}}))$$
 with $Z \sim \mathcal{N}(0, 1) \ \forall i$

The function $NAF(\cdot; NN_{\phi_i}(X_{\pi_i^{\mathcal{G}}}))$ is **invertible** and with **tractable Jacobian** so the likelihood of *X* can be computed exactly and maximized

Overview	Causality Framework	Structure Learning	GraN-DAG & ext.	Conclusion
GraN-DAG	a with Neural A	utoregressive flo	ows	

Without interventions, we run into identifiability problems ...



 Future work: make it works with interventional data (since identifiability is less of a problem)

Overview	Causality Framework	Structure Learning	GraN-DAG & ext.	Conclusion
Conclusi	ion and future wo	ork		

Gradient-based DAG search...

- ... performs similarly to its discrete analogs
- scales well with number of samples (since amenable to stochastic optimization)
- ... can be easily adapted to work with interventional data
- ... allows for very expressive density models (Neural Autoregressive flow)

Future work:

- DAGs appear in many places, could we adapt the neural acyclicity constraint to other problems? (Not causality?)
- Drawing links between causality and representation learning

References

Brouillard, P., Drouin, A., Lachapelle, S., Lacoste, A., & Lacoste-Julien, S. (2020). Gradient-based neural dag learning with interventions.

Bühlmann, P., Peters, J., & Ernest, J. (2014). CAM: Causal additive models, high-dimensional order search and penalized regression. *Annals of Statistics*.

Chickering, D. (2003). Optimal structure identification with greedy search. Journal of Machine Learning Research.

Huang, B., Zhang, K., Lin, Y., Schölkopf, B., & Glymour, C. (2018a). Generalized score functions for causal discovery. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.

Huang, C.-W., Krueger, D., Lacoste, A., & Courville, A. (2018b). Neural autoregressive flows.

Koller, D. & Friedman, N. (2009). Probabilistic Graphical Models: Principles and Techniques - Adaptive Computation and Machine Learning. MIT Press.

Lachapelle, S., Brouillard, P., Deleu, T., & Lacoste-Julien, S. (2020). Gradient-based neural dag learning. In Proceedings of the Eighth International Conference on Learning Representations (to appear).

Peters, J., M. Mooij, J., Janzing, D., & Schölkopf, B. (2014). Causal discovery with continuous additive noise models. Journal of Machine Learning Research.

Sachs, K., Perez, O., Pe'er, D., Lauffenburger, D., & Nolan, G. (2005). Causal protein-signaling networks derived from multiparameter single-cell data. Science.

Yu, Y., Chen, J., Gao, T., & Yu, M. (2019). DAG-GNN: DAG structure learning with graph neural networks. In Proceedings of the 38th International Conference on Machine Learning.

Zheng, X., Aragam, B., Ravikumar, P., & Xing, E. (2018). Dags with no tears: Continuous optimization for structure learning. In Advances in Neural Information Processing Systems 31.

Philippe Brouillard Alexandre Drouin

Tristan Deleu

Simon Lacoste-Julien

Alexandre Lacoste

