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Overview

Overview

m Causality Framework
m Causal Graphical Models
m Motivating example
m Markov Equivalence and Structure Identifiability

m Causal Structure Learning
m Problem formulation
m Discrete Search Algorithms
m Gradient-Based Algorithms

m GraN-DAG & extensions
m The algorithm
m With interventional data
m Neural Autoregressive Flows
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Causality Framework

Causal graphical models (CGM)

Simple example

g=

(V,E)
m Let G be a directed acyclic graph (DAG)
®m Assume p(x) = ]_[,?’:1 p(x,-\xﬁig)

m Random vector X € RY (d variables)

n7 = parents of jin G

m Encodes (conditional) independence statements
(via d-separation, see [Koller & Friedman, 2009])

m Almost identical to Bayesian Networks but allows P(x.y,2) = pX)P(z | X)Ly | 2)
for interventional distributions: = p(x,y|z) = p(x|z)p(y|2)

p(x|do(2)) ie. X1Y|Z

‘ The do operator will be explained in the following example...
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Causality Framework

Why should you care: Kidney Stone Treatment

T = Treatment € {A, B}
Z = Stone size € {small, large}
R = Patient recovered € {0,1}

Patients with

Overall
small stones

Patients with
large stones

Treatment a:

78% (273/350)  93% (81/87)

73% (192/263)

Open surgery
Treatment b:
Percutaneous 83% (289/350) 87% (234/270) 69% (55/80)

nephrolithotomy

(Example taken from Element of Causal Inference by Peters et al. p111)
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Causality Framework

Why should you care: Kidney Stone Treatment

Pay attention to these two questions...
Assuming the size of your stone is unknown...
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Causality Framework

ould you care: Kidney Stone Treatment

Pay attention to these two questions...
Assuming the size of your stone is unknown...

‘ What is your chance of recovery knowing that the doctor gave you treatment A? ‘

‘ What is your chance of recovery if you decide to take treatment A? ‘
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Causality Framework

hould you care: Kidney Stone Treatment

/A
T = Treatment € {A, B} \z)
Z = Stone size € {small, large} / \
R = Patient recovered € {0,1} —F N
| T/)4>:\R/‘

What is your chance of recovery knowing that the doctor gave you treatment A?

m Knowing that your doctor gave you treatment A tells you that you probably have a
large kidney stone ... P(Z = large|T = A) = 0.75

m ... which reduces your chance of recovery
P(R=1]T=A,Z=large) =0.73 < 0.93=P(R=1|T = A, Z = small)
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Causality Framework

ould you care: Kidney Stone Treatment

T = Treatment € {A, B}
Z = Stone size € {small,large} / \
R = Patient recovered € {0,1}

\T‘4\

What is your chance of recovery knowing that the doctor gave you treatment A?

m Knowing that your doctor gave you treatment A tells you that you probably have a
large kidney stone ... P(Z = large|T = A) = 0.75

m ... which reduces your chance of recovery
P(R=1]T=A,Z=large) =0.73 < 0.93=P(R=1|T = A, Z = small)

‘ What is your chance of recovery if you decide to take treatment A? ‘

m Your really don’t know anything about your kidney stone

M ||a Université ﬂq‘l
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Causality Framework

hould you care: Kidney Stone Treatment

T = Treatment € {A, B}
Z = Stone size € {small, large} / \
R = Patient recovered € {0, 1}

\T‘ﬁ

‘ What is your chance of recovery knowing that the doctor gave you treatment A?

P(R=1|T =A)=0,78 P(R=1|T = B) = 0,83
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Causality Framework

hould you care: Kidney Stone Treatment

T = Treatment € {A, B}
Z = Stone size € {small, large} / \
R = Patient recovered € {0, 1}

\T‘ﬁ

‘ What is your chance of recovery knowing that the doctor gave you treatment A? ‘

P(R=1|T =A)=0,78 P(R=1|T = B) = 0,83

‘ What is your chance of recovery if you decide to take treatment A? ‘

P(R = 1|do(T = A)) = 0,832 P(R=1|do(T = B)) =0,782
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Causality Framework

hould you care: Kidney Stone Treatment

T = Treatment € {A, B}
Z = Stone size € {small, large} / \
R = Patient recovered € {0, 1}

\T‘ﬁ

‘ What is your chance of recovery knowing that the doctor gave you treatment A? ‘

P(R=1|T =A)=0,78 P(R=1|T = B) = 0,83

‘ What is your chance of recovery if you decide to take treatment A? ‘

P(R = 1|do(T = A)) = 0,832 P(R=1|do(T = B)) =0,782

‘ But how do we compute these interventional distributions?! ‘
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Causality Framework

hould you care: Kidney Stone Treatment

/5
T = Treatment € {A, B} \Z)
Z = Stone size € {small, large} % \
R = Patient recovered € {0, 1} L S
"\]:/j i \5/‘
P(R,Z|do(T = A)) = P(R|Z, T = A)PF=AZA P(2)
N —

The decision of taking treatment A
does not depend on Z anymore

Then simply marginalize as usual:
P(R=1]|do(T = A)) = Z P(R=1,Z|do(T = A))
z

= ST P(R=1/Z,T = AP(Z) = 0,832
z
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Causality Framework

cture Learning

= In the kidney stone example, the causal graph was known

m What if we don’t have it? Learn it!

Purely observational data

X Xo X;

sample1 | 1.76 10.46 0.002 °'@

sample2 | 3.42 78.6 0.011

samplen | 456 9.35 1.96
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Causality Framework

cture Learning

= In the kidney stone example, the causal graph was known

m What if we don’t have it? Learn it!

Purely observational data

X Xo X;

sample1 | 1.76 10.46 0.002 °'@

sample2 | 3.42 78.6 0.011

samplen | 456 9.35 1.96

‘ Is it even possible? ‘
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Causality Framework

Identifiability

m In general, this is impossible without interventional data...
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Causality Framework

Identifiability

m In general, this is impossible without interventional data...

m Multiple DAGs can express the same distribution...
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Causality Framework

Identifiability

m |f we assume causal mechanisms are "simple", then G can be identified...
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Causality Framework

Identifiability

m |f we assume causal mechanisms are "simple", then G can be identified...

An example (useful later!)
If data follows this model...

XilX g ~ N(f(X ), 07)

...then correct causal DAG G can be identified from purely observational data (see T
[Peters et al., 2014] for proof and regularity conditions) ité

lontréal
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Structure Learning

Structure Learning

X Xo X

sample1 | 1.76 10.46  0.002 6'@

sample2 | 342 786  0.011

samplen | 456 9.35 1.96

Score-based algorithms

G = arg max Score(G)
GeDAG

Often, Score(G) = regularized maximum likelihood under G
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Structure Learning

cture Learning

Taxonomy of score-based algorithms (non-exhaustive)

H Discrete optim.

Continuous optim.

7 Linear GES NOTEARS
et [Chickering, 2003] [Zheng et al., 2018]
S /" Nonlinear . CAM GraN-DAG
oS [Bihlmann et al., 2014] | [Lachapelle et al., 2020]
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Structure Learning

cture Learning

Taxonomy of score-based algorithms (non-exhaustive)

H Discrete optim.

Continuous optim.

% Linear GES NOTEARS
et [Chickering, 2003] [Zheng et al., 2018]
S / Nonlinear . CAM GraN-DAG
NS [Blihimann et al., 2014] | [Lachapelle et al., 2020]
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Structure Learning

A greedy algorithm - CAM [Bihimann et al., 2014]

Step 1 @ i O PNS @
Sl [ K] ™ |
cadbog & )

Score improvements matrix

- 0201 - - 03 @
aFS

Step 2 04/= - - - - @
- Smrtwith. empty.grﬂph _ _ -~ o4
- Add edge improving include best edge
likelihood themost |~ = — = = 7
-Repeat |- = - - - -

Step 3 @

Remove edges via remove edges
feature selection I
atur by variable selection
(significance test) @ ‘ @ @

Illa Université ﬂq‘l
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Structure Learning

cture Learning

Taxonomy of score-based algorithms (non-exhaustive)

H Discrete optim.

Continuous optim.

7 Linear GES NOTEARS
el [Chickering, 2003] [Zheng et al., 2018]
S /" Nonlinear . CAM GraN-DAG
oS [Bihlmann et al., 2014] | [Lachapelle et al., 2020]
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Structure Learning

NOTEARS: Continuous optimization for structure learning

m Encode graph as a weighted adjacency matrix U = [uy]. .. |uy] € R9*
0 0 1 0 0 48
°'° A=11 0 {1 U=|o02 0o -17
e 0 0 O 0 0 0

Adjacency matrix ~ Weighted adjacency matrix

Mila Université ﬂq‘l

de Montréal

Sébastien Lachapelle EAI Science Talk March 4th, 2020 17/40



Structure Learning

NOTEARS: Continuous optimization for structure learning

m Encode graph as a weighted adjacency matrix U = [uy]. .. |uy] € R9*
0 0 1 0 0 48
°'° A=11 0 {1 U=|o02 0o -17
e 0 0 O 0 0 0

Adjacency matrix ~ Weighted adjacency matrix

m Represents coefficients in a linear model:
Xi = U,TX+ noise; Vi
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Structure Learning

NOTEARS: Continuous optimization for structure learning

m Encode graph as a weighted adjacency matrix U = [uy]. .. |uy] € R9*
0 0 1 0 0 48
e'e A=11 0 {1 U=|o02 0o -17
e 0 0 O 0 0 0

Adjacency matrix ~ Weighted adjacency matrix

m Represents coefficients in a linear model:
Xi = U,TX+ noise; Vi

m For an arbitrary U, associated graph might be cyclic

Acyclicity constraint

NOTEARS [Zheng et al., 2018] uses this differentiable acyclicity constraint:

TreloU _d=0

Mila Université nq'\

de Montréal

Sébastien Lachapelle EAI Science Talk March 4th, 2020 17/40



Structure Learning

NOTEARS: Continuous optimization for structure learning

m NOTEARS [Zheng et al., 2018]:
Solve this continuous constrained optimization problem:

max —|[X — XU|Z2 = MU|l; st Tre'®V _d=0

Score

m where X € R"*9 is the design matrix containing all n samples
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Structure Learning

NOTEARS: Continuous optimization for structure learning

NOTEARS [Zheng et al., 2018]:
Solve this continuous constrained optimization problem:

max —|[X — XU|Z2 = MU|l; st Tre'®V _d=0

Score

where X € R"%? s the design matrix containing all n samples

Solve approximately using an Augmented Lagrangian method

® Amounts to maximizing (with gradient ascent)
—[IX = XU|Z = A|U[}1—as(Tr YO — a) — %’(Tr eVoU _ g)?

while gradually increasing a; and ¢
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Structure Learning

NOTEARS: The acyclicity constraint

Tr eUOU _ Méxik
e —-d=0 ey =
k=0 "

Suppose A € {0, 1}9*9 is an adjacency matrix for a certain directed graph
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Structure Learning

NOTEARS: The acyclicity constraint

Tr eUOU _ Méxik
e —-d=0 ey =
k=0 "

Suppose A € {0, 1}9*9 is an adjacency matrix for a certain directed graph

(AK);; = number of cycles of length k passing through i
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Structure Learning

NOTEARS: The acyclicity constraint

Tr eUOU _ Méxik
e —-d=0 ey =
k=0 "

Suppose A € {0, 1}9*9 is an adjacency matrix for a certain directed graph
(AK);; = number of cycles of length k passing through i

Graph acyclic <= (AK); =0 for all i and all k
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Structure Learning

NOTEARS: The acyclicity constraint

Tr eUOU _ Méxik
e —-d=0 ey =
k=0 "

Suppose A € {0, 1}9*9 is an adjacency matrix for a certain directed graph
(AK);; = number of cycles of length k passing through i

Graph acyclic <= (AK); =0 for all i and all k

<= T"[Zk 1 k,]—O
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Structure Learning

NOTEARS: The acyclicity constraint

Tr eUOU _ Méxik
e —-d=0 ey =
k=0 "

Suppose A € {0, 1}9*9 is an adjacency matrix for a certain directed graph
(AK);; = number of cycles of length k passing through i

Graph acyclic <= (AK); =0 for all i and all k
0o k
= Tr [Zk:1 %] =0

= Tr [ 4 - A =0
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Structure Learning

NOTEARS: The acyclicity constraint

Tr eUOU _ Méxik
e —-d=0 ey =
k=0 "

Suppose A € {0, 1}9*9 is an adjacency matrix for a certain directed graph
(AK);; = number of cycles of length k passing through i

Graph acyclic <= (AK); =0 for all i and all k
k
= Tr [Z;’; %] =0
k
= TF[ZEZO% —AO] =0

— TreA—d=0
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Structure Learning

NOTEARS: The acyclicity constraint

Tr eUOU _ Méxik
e —-d=0 ey =
k=0 "

Suppose A € {0, 1}9*9 is an adjacency matrix for a certain directed graph
(AK);; = number of cycles of length k passing through i

Graph acyclic <= (AK); =0 for all i and all k
k
= Tr [Z;’; %] =0
k
= TF[ZEZO% —AO] =0

— TreA—d=0

The argument is almost identical when using weighted adjacency U instead of A... ‘
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GraN-DAG & ext.

cture Learning

Taxonomy of score-based algorithms (non-exhaustive)

H Discrete optim. Continuous optim.
% Linear GES NOTEARS
e [Chickering, 2003] [Zheng et al., 2018]
e / Nonlinear . CAM GraN-DAG
NS [Buhlmann et al., 2014] | [Lachapelle et al., 2020]
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GraN-DAG & ext.

Gradient-Based Neural DAG Learning

NN‘% > Ogy—>log p(xylx_;; 0,

Input
Wkt
X NNy, = 0 =>log p(x,lx_,; 0,,) 2w, iy
m (6) _
R? : W(i) = (th weight matrix of NNd,(l.)
¢ = {0 i

NN¢'(4) — 9(,,,)—>log p(xd|x—d ’ e(d))
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GraN-DAG & ext.

Gradient-Based Neural DAG Learning

NNme = Oqy—>log p(xylx_; ;64

Input
Wkt
x NN¢(2) = 9(2)_>10g P(x2|X,2 ; 9(2)) { (’) (N (') ¥
m
(6) _
R? : W(i) = (th weight matrix of NN¢,(I.)
¢ = {0 i

NN¢'(4) — 9(,,,)—>log p(xd|x—d ’ e(d))

‘ ]'[;j:1 p(xi|x_; 6;) does not decompose according to a DAG! ‘

‘ We need to constrain the networks to be acyclic! How? ‘
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GraN-DAG & ext.

Gradient-Based Neural DAG Learning

Key idea:
Construct a weighted adjacency matrix A, (analogous to U from the linear case)
which could be used in the acyclicity constraint

Then maximize likelihood under acyclicity constraint via augmented Lagrangian

d

max B> logPps(Xi|X_j)—ai(Tre* — d) — BE(Tr 6o — d)?
¢ X~Px g 2

Augmented Lagrangian
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GraN-DAG & ext.
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GraN-DAG & ext.

Constructing weighted adjacency matrix A,

Let's measure the "strength” of edge X; — X;

m Path product:

(1) (2) (3)
W IwE), W) > 0
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GraN-DAG & ext.

cting weighted adjacency matrix A,

Let's measure the "strength” of edge X; — X;

m Path product:

(1) (2) (3)
W IwE), W) > 0

m C2 W |wdwh)
"Connection strength” from X; to 6;) :

7N m S
\*’ »«0"0{!!),5? > k1G>0
¥4

N

VAN
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Let's measure the "strength” of edge X; — X;
1 Cij = 0 = All paths from X; to X; are inactive!
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ructing weighted adjacency matrix A,

X1
l
(9(\,’:]? R?
k
t t
D

il
\)

N

X o / A
WQ%;
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Let's measure the "strength” of edge X; — X;

m Path product:
M1 w® )
(WS IWEL (W) > 0
m C2 W |wdwh)
"Connection strength” from X; to 6;) :
k1 Cy >0

m > 77, Gy = 0= All paths from X; to X; are inactive!

(As); = { Sk (Chp)yyo i)

0, otherwise
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GraN-DAG & ext.

Gradient-Based Neural DAG Learning

The algorithm:

Preliminary neighborhood selection (analogous to CAM)
i.e. for each node, select potential parents via any variable selection approach

Maximize likelihood under acyclicity constraint via augmented Lagrangian
d

A Ht Az 2
max [ E log Py (Xi|X_j)—c(Tre? —d) — —(Tre”¢ —d
X = g ¢( /‘ /) I( ) 2( )

Augmented Lagrangian

DAG Pruning (analogous to CAM)
i.e. for each node, get rid of some parents via any variable selection approach

Step 1 and 3 helps reducing overfitting.
Important since adding edges cannot reduce maximum likelihood

y Mila Université ﬂq‘l
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GraN-DAG & ext.

Gradient-Based Neural DAG Learning

Entries of A,

0 10000 2[][3[][] 30000 40000
Number of gradient steps

Sébastien Lachapelle

EAI Science Talk

Correct edges
Wrong edges
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Experiments

Synthetic data: Xj|X ¢ ~ N(f,-(XWg),a,?) fi ~ Gaussian Process
Models: GraN-DAG, NOTEARS and CAM makes the Gaussian assumption

Real data: Measurements of expression levels of proteins and phospholipids in human
immune system cells [Sachs et al., 2005]

Synthetic (50 nodes)

Protein data set

SHD SID SHD SID
GraN-DAG  102.6+21.2 1060.1+£109.4 13 47
Continuous  DAG-GNN  191.9+15.2 2146.2+t64 16 44
NOTEARS 202.3+14.3 2149.1£76.3 21 44
Discrete CAM 98.84+20.7 1197.2+125.9 12 55
RANDOM 708.4+234.4 1921.3+203.5 21 60

DAG-GNN [Yu et al., 2019]

Sébastien Lachapelle Mila

EAI Science Talk
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GraN-DAG & ext.

Experiments

m In previous setup, synthetic data generation and model matched

m Here: model misspecification

Synthetic post nonlinear data sets

PNL-GP PNL-MULT
SHD SID SHD SID
10 nodes ERI  GraN-DAG ~ 1.6+3.0 3.9+8.0 13.1+38 3574123
DAG-GNN 115468  324+193 17.9004£6.2  40.700-:14.743
NOTEARS 107455  34.4+19.1 14.0+4.0  386+119
CAM 1.5+2.6 6.8+12.1 120464  363+17.7
GSF 6.2+3.3 [7.748.7, 18.9+12.4] 10.7+3.0  [9.8+119,25.3+115]
RANDOM 238429  36.8+19.1 237429 3774207

GSF [Huang et al., 2018a]
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Experiments: Effect of sample size

m Previous experiment: relatively small dataset: 1000 examples
m GraN-DAG is more expressive than CAM

m Advantage shows up in large sample size regimes

Effect of sample size - Gauss-ANM 50 nodes ER4 (averaged over 10 datasets)

Sample size  Method SHD SID

500 CAM 1235+ 139 1181.2 £160.8
GraN-DAG 130.2 £ 144 12464 £+ 126.1

1000 CAM 103.7 £ 152 1074.7 £ 125.8
GraN-DAG 1044 £153 942.1 £69.8

5000 CAM 74.1+13.2  845.0 £159.8
GraN-DAG  71.9+159  554.14+117.9

10000 CAM 66.3 +16.0  808.1 £ 1429

GraN-DAG 659+ 19.8 4534 £171.7
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GraN-DAG & ext.

AG with interventions [Brouillard et al., 2020]

Can we make use of interventional data?
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GraN-DAG & ext.

GraN-DAG with interventions [Brouillard et al., 2020]

Some terminology and setting:
m |/ C {1,...,n} is an interventional target (set of nodes on which we intervene)

m Definition of stochastic intervention:

p(xt, ..., Xgldo(X))) = [ Pj(Xj\X,rjg ) [T 8(x)
idl jel

where p;(x;) is the new marginal replacing p;(x;|x_g ) (parents are "cut out")
/
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GraN-DAG & ext.

AG with interventions [Brouillard et al., 2020]

Some terminology and setting:
m |/ C {1,...,n} is an interventional target (set of nodes on which we intervene)

m Definition of stochastic intervention:

p(x1, ... xqldo(X)) = [ ] pixlx, g)Hpj(Xj
j¢l! jel

where p;(x;) is the new marginal replacing p;(x;|x_g ) (parents are "cut out")
/

m Observed: {(X(M (M) .. (X [(M)} where /() is the interventional target
associated to observation X0).

D~ P iid. Vi
XD~ P(X[1 = 1D) £ p(xi, ..., X4l do(Xy»)) Vi §)
where P(/) is a distribution over a collection of interventional targets Z
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GraN

GraN- &ext.

DAG with interventions [Brouillard et al., 2020]

m Think about a CGM as a family of models of the form
[Texilx.c:0) [T Bi(x: )l € T
il ! jel

where w! £ {w;},-e/ for each | € T are learnable parameters.

m The natural optimization problem:

max B nwpcn | D108 Bi(GIX-id) + > logpi(Xjiw)) | st Trefe =d
o {w }IEI j¢! jel

= But we do not really care about learning the p;(X;; w})

m ... and problem trivially decomposes as a sum of max,4 and max g, SO ...

ez
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GraN-DAG & ext.

GraN-DAG with interventions [Brouillard et al., 2020]

m ... can forget about p;(X;; w}) altogether and get

The optimization problem:

m;XE(X’/)NP(X’/) Z |ng()(j|X,j, ¢j) st Tr eAd’ =d
¢l

In a nutshell: We throw out the conditionals associated with the intervention variables
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GraN-DAG & ext.

GraN-DAG with interventions [Brouillard et al., 2020]

220
200

180 AR S/

SHD

140 -
120
100

80
0 10 20 30 40 50
Number of interventions
m Linear data (unidentifiable without interventions)
m 50 nodes and = 200 edges
= Intervention on one node at a time
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m Nonlinear data

GraN-DAG & ext.

GraN-DAG with interventions [Brouillard et al., 2020]

20 nodes. e = 1 20 nodes, ¢ = 4 50 nodes, ¢ = 1 50 nodes, ¢ = 4
Method SHD SID SHD SHD SID SHD SID
GraN-DAG 1.0 212 100 8531202 885.3 £1s14 .2 428 12.7 £ 136
GraN-DAG no interv 0.7 +os 50 1098+1ms 102 4l+2s  18.6+1s1
GIES 14.6 643 16 282.7 +367 170.2+211 182 41.6+99  107.9 +489
CAM* 488125 14431386 91.9: 119 10244+ 47138 2451w

m Linear data

20 nodes, ¢ = 1 20 nodes, ¢ = 4 50 nodes, ¢ = 1 50 nodes, ¢ = 4
Method SHD SID SHD SHD SID SHD SID
GraN-DAG 5.7 £54  313+3s 63.4+360 T+160  699.9+1663
GraN-DAG no interv 177 1638 +704 5 1667.7 1692
GIES 2. 1 757.8+ama
CAM* x 14841 +2x

m More experiments in workshop paper...

EAI Science Talk
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GraN-

GraN-DAG with Neural Autoregressive flows

m In previous experiments, GraN-DAG models was:
Xi = NNy, (X g)+0;Z with Z~ N(0,1) Vi
m GraN-DAG’s framework allows for usage of "Neural Autoregressive Flows"
[Huang et al., 2018b]
Xi = NAF(Z; NNy, (X g)) with Z ~ N(0,1) Vi

m The function NAF(-; NNy, (X _¢)) is invertible and with tractable Jacobian so the
likelihood of X can be comput/ed exactly and maximized
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GraN-DAG & ext.

GraN-DAG with Neural Autoregressive flows

= Without interventions, we run into identifiability problems ...

175
150

125

nll_val

075

050

025

0.00
True MEC COMPLETE  RANDOM

dag_type

m Future work: make it works with interventional data (since identifiability is less of
a problem)
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Conclusion

Conclusion and future work

Gradient-based DAG search...
m ... performs similarly to its discrete analogs

m ... scales well with number of samples (since amenable to stochastic optimization)
® ... can be easily adapted to work with interventional data

m ... allows for very expressive density models (Neural Autoregressive flow)

Future work:

m DAGs appear in many places, could we adapt the neural acyclicity constraint to
other problems? (Not causality?)

m Drawing links between causality and representation learning
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Conclusion
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